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A modulated cross-wave of resonant frequency w l ,  carrier frequency w = q ( l +  O(E)) ,  
slowly varying complex amplitude O(e%), longitudinal scale b / d  and timescale 1 /cw 
is induced in a long channel of breadth b that  contains water of depth d and is 
subjected to  a vertical oscillation of amplitude O(eb) and frequency 2w, where 
0 < e 6 1.  The complex amplitude satisfies a cubic Schrodinger equation, generalized 
to incorporate weak damping and the parametric excitation. A solution is obtained 
that describes the standing solitary wave observed by Wu, Keolian & Rudnick (1984). 
The results depend on both d j b  and l,/b, where 1, is the capillary length (1, = 2.7 mm 
for clean water), and solitary waves are impossible if d / b  c 0.325 for l,/b = 0 or if 
l,/b > 0.045 for d / b  2 1 .  The corresponding cnoidal waves (of which the solitary 
wave is a limiting case) are considered in an appendix. 

1. Introduction 
The following investigation was stimulated by Wu, Keolian & Rudnick’s (1984) 

observation of a standing solitary wave in a long channel subjected to either a vertical 
oscillation at a frequency of approximately twice the natural frequency of the 
dominant cross-wave or a lateral oscillation a t  a frequency approximately equal to 
the natural frequency. This standing wave appears to be related to the trapped 
cross-waves that sometimes appear in front of a wavemaker a t  either the frequency 
of the wavemaker (Barnard, Mahony & Pritchard 1977) or half that  frequency 
(Barnard & Pritchard 1972; Jones 1984). The amplitudes reported by Wu et al. were 
rather large ( -  2 em), and the corresponding lengths were of the order of the channel 
width, but it appears that  waves of smaller amplitude should be correspondingly 
longer and may be regarded as slowly modulated, nonlinear cross-waves. I consider 
here the case of parametric (vertical) excitation. 

I was first led to reinvestigate the problem of Faraday resonance, for which 
standing waves are parametrically excited in a basin that is subjected to a vertical 
oscillation a t  approximately twice the natural frequency of a particular mode. The 
central result of this investigation (Miles 1984) is that if (i) the free-surface 
displacement is represented by the expansion 

r ( x ,  t )  = r,V) $,@)9 ( 1 . 1 )  

where the @,(x) constitute a complete set of normal modes with r.m.8. values of unity 
and the r,(t) are the corresponding generalized coordinates, and (ii) the driving 
frequency 2w approximates twice that of a particular (typically, but not necessarily, 
the dominant) mode, say n = 1 ,  for which (by hypothesis) 

v1 = a 1 2 ) ( ~ ) c o s w t + q ( ~ ) s i n w t ] ,  T = ewt, (1.2a, 6 )  
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where a is a reference amplitude and B is a small parameter, then (iii) the dimensionless 
amplitudes p and q are governed by the nonlinear evolution equations 

@ + a p + [ p - y + A ( p 2 + q 2 ) ] q  = 0, ( 1 . 3 ~ )  

??+aq-La+Y+A(P2+q2)1p = 0, (1.36) 

where a, ,!3 and y are measures of damping, frequency offset, and driving amplitude 
that are O(1) as s + 0  (see 42), and A is a measure of nonlinearity that relates the 
frequency of free (a  = y = 0) oscillations of small but finite amplitude to the natural 
frequency of the mode under consideration. The appropriate normal modes in the 
present problem are the two-dimensional cross-waves, for which $n = d2 cos (nnylb) 
in a channel with walls at y = 0,  b ;  and the corresponding value of A ,  which depends 
only on the depth ratio d / b ,  has been calculated by Tadjbakhsh & Keller (1960). 

The two-dimensional formulation may be modified to incorporate a weak spatial 
variation (see 43), for which p and q are functions of both the slow time T and the 
stretched variable X = O ( & x / b ) ,  where x is measured along the channel. This leads 
to the introduction of the spatial derivatives qxx and p,, in ( 1 . 3 ~ )  and (1.36) 
respectively, after which the two evolution equations may be combined to obtain a 
generalized (to incorporate damping and parametric excitation), cubic Schrodinger 
equation (§4), which admits a standing solitary-wave solution. (This solitary wave 
is a limiting case of a cnoidal wave, which I examine briefly in Appendix A.) 

On first carrying out the calculation outlined above, I had incorporated the 
constraint vo = 0, where yo, the mean displacement, is the coefficient of $, = 1 in 
the Fourier expansion (1 .1) .  This constraint is manifestly necessary for conservation 
of mass in the two-dimensional problem, in which 7 is independent of x ,  but the 
argument is no longer compelling if the integral {{ydxdy has a finite value (as i t  
does for the solitary wave), which may be compensated by an infinitesimal change 
in the mean elevation over the infinitely long channel. The paradox is resolved by 
the requirement that the velocity potential, which comprises a spatially independent 
component that is linear in t in the two-dimensional problem (wherein it contributes 
to the perturbation pressure through the term aq5lat in Bernoulli’s equation but does 
not contribute to the kinetic energy), have bounded x- (or X-) derivatives as t.T co 
in the three-dimensional problem. 

The results obtained in 434 and 5 have been obtained independently, and 
through a rather different procedure, by Larraza & Putterman (1984) for free waves 
(a = y = 0 herein). On comparing our results, we found a small discrepancy in the 
parameter A .  I had originally used Tadjbakhsh & Keller’s result for the 
two-dimensional problem, (2.11) below, and it was only after learning of Larraza & 
Putterman’s result that I developed the argument outlined in the preceding 
paragraph and obtained the result (3.17) below for A .  To the extent that our results 
overlap, then, priority is due to them. 

It is evident from the relatively small dimensions of the channel used by Wu et 
al. that capillary effects must have been significant in their experiments. These effects, 
which are examined in Appendix B, modify the parameters in the evolution equations 
(but not the form of these equations) and render solitary waves impossible if the 
surface tension exceeds a certain critical value. 
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2. Resonantly forced cross-waves 

channel of breadth b and depth d that is subjected to the vertical oscillation 
We consider the two-dimensional cross-waves induced in a long rectangular 

z, = a, cos 2wt (0<%4 1) 
9 

where w approximates the natural frequency 

w1 = (gk tanh kd)a (k = i) 
of the dominant mode. The free-surface displacement (relative to  the plane of the level 
surface, which moves with the channel) admits the Fourier expansion 

7 = rn ( t )  @n(Y), @n = 2/2cosnk~,  (2.3a, b)  

where the 7, are generalized coordinates and the repeated index n is summed from 
1 to 0 0 ;  7, = 0 by virtue of conservation of mass (but see $3).  The assumptions 

(2.4a, b)  

where e is a small, positive scaling parameter ( E  is determined by y = 1 in M84 (which, 
here and subsequently, signifies Miles 1984) but is ultimately defined by (2.7) in the 
present formulation), permit the 7, to be posited in the form (M84(3.1)) 

7, = S,,ab(~)  cosO+q(~) sinO]+a2ktanh kd[A,(T)cos28+Bn(T)sin20+Cn(~)] ,  

where a = O(d/k) is a lengthscale (a  = 1 in M84(3.1)), p ,  q,  A,, B, and C, are slowly 
varying amplitudes, and 

e =  ot, = (2.6a, b )  

are fast and slow dimensionless times. 
The Lagrangian of the motion may be constructed as in M84§3 and averaged over 

0,  after which the A, ,  B, and C, (which are significant only for n = 0 and 2 in the 
present problem by virtue of the orthogonality of @, and $: for n =# 0 or 2 )  may be 
determined as functions of p and q. The end result, as given by M84(3.9) and (3.10) 
after choosing 

(2 .5)  

a = 2 d A  ( A  = k-’ tanh kd) (2.7) 

( L )  = E9a2{(a(pq--1)~)+H(p,q)}{l  +O(E)},  (2.8) 

and allowing for the difference in scaling (a  versus Z), is? 

where ( ) signifies a joint average over y and 0, the dots imply differentiation with 
respect to T ,  and 

H = ( a / 3 @ 2 + + z ) + ~ ( p 2 - q 2 )  +:A,(p2+q2)2.  (2.9) 

The parameter A,, which relates the frequency of free (y  = 0) oscillations of small 

t The true Lagrangian for a unit length of the channel is pbL, where p is the fluid density. 
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but finite amplitude in the dominant mode to the natural frequency according to 
(M84(3.11)) 

(2.10) 

is given by (Tadjbakhsh & Keller 1960) 

A, = i(2T4+3T2+12-9T-2), T = tanhkd. (2.1 1 a ,  b )  

3. Spatial modulation 
We now suppose that  the motion varies weakly in the x (longitudinal) direction, 

with a lengthscale that is O ( l / d k ) ,  and regard p and q as functions of both the slow 
time 7 and the stretched variable 

x = 2(€T)tkX. (3.1) 

The Lagrangian density in x, y, t is given by (Miles 1977, after replacing y and g 
therein by z and g + .Z0) 

1 
L = F'1,-zf (V$h)2dz-$(g+20)q2, 

-d 
(3.2) 

where 6 is the velocity potential a t  z = q (6 and q are canonically conjugate variables 
in Hamilton's sense). Both 6 and q admit Fourier expansions of the form ( 2 . 3 ~ ~ ) ;  
however, we can no longer impose the a priori restriction qo = 0, since a finite value 
of j j q O d x d y  may be compensated by an infinitesimal change in the mean 
elevation over the infinite surface to ensure conservation of mass. We therefore posit 
the joint expansion 

(637) = (Cmj q n )  @n(Y)i @n = (2--on)'cosnky, (3.3a. b )  

where repeated indices now are summed from 0 to 00, Son is the Kronecker delta, and 
6, and qn are function of 0 ,  7 and X. Substituting (3.3) into (3.2), averaging over y 
(we denote this average by square brackets), evaluating the kinetic-energy integral 
as in $4 of M76 (Miles 1976), and invoking $ h i  = O(ek26?), we obtain 

l b  7 
[LI = C n q n t , - i & m m t m 6 n - % j  0 dYJ -d $idz-$(g+2o)Tnqn (3-4a) 

= [L,] + A[L], (3 .4b )  

wherein an error factor of 1 + O(e) is implicit. 

' m n  = ' m n  I n  + klmn 71 +i'jlmn ~j qt + * - a  

is given by M76(4.4), 
An = nk tanh nkd, 

(3.5) 

(3.6) 

[L,] is the reduced form of [L] for q, = 4, = 0 and therefore must be equivalent to 
[L] in $2, and A[L] comprises the incremental terms in q, and $hx. 

It suffices for the calculation of A[L] to use the linear approximation to the solution 
of the kinematic boundary-value problem 

VZ$h = o ,  $ h y =  0 , $hz = o  ( z = - d ) ,  $hz =?/t ,  ( z =  7).  

(3 .7a,  b ,  c ,  d )  
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which is given by 

$ = (ksinhkd)-ly,t?+kl(y)coshk(z+d){l +O(d)}. (3.8) 

(Note that the error factor 1 + O(d)  in $ ultimately implies an error factor of 1 + O(e) 
in L by virtue of the requirement (Hamilton's principle) that L be stationary with 
respect to  first-order variations about the exact solution.) Substituting (3.8) into the 
integral in (3.4a), combining the result with the remaining incremental terms, 
E0 vat, ;Aoll qo 6: (the remaining contributions of q0 to ;Arnn 6, tn are negligible in the 
present approximation), and $(g+  4)  z $T:, invoking A,,, = k2( 1 - P), and 
approximating 5, by q,,/kT, which follows from (3.8), we obtain 

1 B  
4 L I  = t o  Tot  -w2 - 1)  To 3% - h T :  -%-TLt j  (3.9) 

where 
B = tanhkd+kdsech2kd = T + k d ( l - P ) .  (3.10) 

We now invoke the requirement that L be stationary with respect to variations 

Tot  = 0, co t  = - ; v - 2 - 1 ) ~ : t - P / o .  (3.11a, b )  

The implicit solution of (3.11) adopted in $2 (as demanded by conservation of mass) 
is 

v0 = 0, to = -$(T-2-1)(&dt. (3.12a, b )  

This implies that to contains a term that is linear in t ;  however, this term is 
independent of x and enters the solution only through the contribution of - P $ ~  to 
the perturbation pressure (cf. M76, $5).  If, on the other hand, v0  and ql depend on 
x, the resulting divergence of 5, with t is unacceptable and must be prevented by 
choosing 

gT 0 -  --+(T-Z- 1 )  <r:t>, (3.13) 

which renders Eo oscillatory in t (with frequency 2w). Substituting ~j, from (2.5) into 
(3.13), averaging, and invoking u2 z uf = gkT and (2.7) for a ,  we obtain 

To =-d(l-T2)(p2+q2).  (3.14) 

Returning to (3.9), invoking (3.1), (3.11a), (3.13) and (2.5), averaging over 8, and 

of each of to and q0 to obtain 

invoking w2 x ui, we obtain 

( 3 . 1 5 ~ )  

(3.15b) 

It then follows, by adding (3.15b) to (2.8), that  longitudinal modulation may be 
incorporated in the formulation of $2 by replacing (2.9) by 

H = a p ( p 2 + q 2 ) + ~ ( p 2 - q 2 ) + ~ A ( p 2 + 9 2 ) 2 - ; B ( p ~ + p . $ ) ,  (3.16) 

A = Ao+i(l-T2)2 = i(6T4-5T2+16-9T-2). (3.17) 

We remark that A ,  which is plotted in figure 1 ,  is a monotonically increasing function 
of kd that  is asymptotic to 1 as kd f CQ ; it  vanishes a t  kd = 1.022 (cf. 1.058 for Ao).  

B 
kT ( A L )  = & - l ( P 2 -  1)' (&)2-e- (&t)  

= ega2{i( 1 - P)z (p2 + q2)2 -$B(p$ + &)}. 

where 



456 J .  W.  Miles 

kd 

FIGURE 1. A sz A,, as given by (B 4) with cr = k2Z2, as the family parameter. The result for 
cr = 0 corresponds to (3.17). A < 0 for all kd if 0.14 c cr < 0.25. 

(It is worth noting that A may be formally calculated from M84(E7) by including 
m = 0 in the summation therein and invoking the limit am = cc as m+O; excluding 
m = 0 in this result yields ( 2 . 1 1 ~ ~ ) .  Both A and B are modified by capillary effects 
(Appendix B). 

4. Evolution equations 

canonical variables, for which the evolution equations are (cf. (1.3)) 
It follows from the application of Hamilton's principle to  (2.8) that  p and q are 

( 4 . 1 ~ )  

(4.1 b )  

Weak, linear damping may be incorporated a t  this stage by replacing a, by a, + a in 
(4.11, where 

a = a/€, (4.2) 

and 6 is the ratio of actual to  critical damping for free oscillations (of sufficiently small 
amplitude) in the resonant mode and is assumed to  be O ( E )  in the present context 
(damping dominates the effects being considered here if S % e). The damping ratio 
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is perhaps best determined by measuring the decay of the free cross-wave; however, 
i t  may be calculated for a channel with hydrophilic walls (Appendix C). 

Introducing the complex variablet 

r = p+iq (4.3) 

i(r,+ar)+Brxx+(/3+AIrl2)r+yr* = 0, (4-4) 

and combining (4.1 a, b ) ,  augmented by the aforementioned damping terms, we obtain 

where r* ZE p-iq is the complex conjugate of r .  We remark that 

iw 

9 
rl +--El = ar(X, r )  ePiwt. (4.5) 

5.  Solitary waves 
If a = y = 0 (free, undamped motion), (4.4) reduces to the cubic Schrodinger 

equation (Whitham 1974), which admits solitary-wave solutions if A > 0, in particular 
the standing wave 

r = ei(fi+?A)Tsech - X (a = y = 0, A > 0). (5.1) "A): 1 
Substituting (5.1) into (4.5) and invoking (3.1) for X and (2.7) for E ,  we obtain 

(2BTIA)' 
k2a ' 

within 1 + O ( E ~ ) ,  where w now is given by (cf. (2.10)) 

w = wl[ 1 -.(:)"I. 
(5.2a, b )  

(5.3) 

Very weak damping (0 < a + 1 )  may be incorporated by regarding the parameters 
in the solution as slowly varying functions of a7 (Lamb 1980). 

Returning to (4.41, we seek a steady solution in the form, suggested by (5.1), 

r = ei@ sech [ (&)' X ]  , 

where $ is a phase constant. Substituting (5.4) into (4.4), we obtain 

(5.4) 

(5.5a, b )  

An analysis based on evolution equations obtained by positing r = R(r) sech 
[(A/2B):X] in ( L )  and integrating over X implies that only the lower choice in (5 .5)  
yields a stable solution. Invoking (2.4a, b ) ,  (2.7) and (4.2), we then obtain 

It follows that necessary conditions for the existence of the standing wave (5.4), in 
addition to A > 0 ( d / b  > 0.325), are (within 1 + O ( E ) )  

(5.7b) 

t A slightly resealed form of (4.4) may be derived through the canonical transformation 

and 
w2 < ui{ 1 + 2[ (ka ,  T)2 - S2]:}. 

w = @+iq) /d2  and w* = (p-iq)/2/2, which implies w, = i(6H/6w,). 
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The data for a typical run in the channel of Wu et al. are b = 2.54 cm, d = 2.00 cm, 
g = 980 cm/s, a, = 0.075 cm, a = 1.7 cm and o = 32.7 rad/s (21, = 10.4 Hz) . The 
corresponding value of w1 is 34.6 rad/s (uncorrected for surface tension). The 
estimated damping ratio (see Appendix C) is S = 0.015, which is much smaller than 
w2a,/g = 0.082, so that (5.7a) is amply satisfied. The corresponding critical value of 
w / w l ,  as calculated from ( 5 . 7 b ) ,  is 1.077; however, the incorporation of a surface 
tension of 72 dyn/cm (Appendix B, cr x 0.1 12) yields a critical value of 1.128, which 
exceeds the actual value of 0.946, as required. The calculated value of a ,  as given 
by (5.6) after incorporating surface tension and invoking (B 4) for the surface- 
tension-corrected value of A, is 2.3 em, which, in view of the assumption of small 
amplitudes in the theoretical calculation, is perhaps closer than might have been 
expected to the observed value of 1.7 cm. The characteristic length I, as given by 
(5.2b) using (B 4) and (B 5) for A and B, is 1.1 em, which compares with an observed 
value of roughly 1.4 em (obtained by rescaling the observed value of 1.12 cm for an 
amplitude of 2.1 cm). The product la is 2.41 om2, which agrees (within the accuracy 
of the data) with the observed value of 2.35 cm2. 

Periodic (in X) solutions of (4.4) are considered in Appendix A. 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE81-17539, and by the Office of Naval Research, 
Contract NR 062-318 (430). 

Appendix A. Cnoidal waves 
The solitary wave (5.4) is a limiting case of the cnoidal wave 

where $is given by (5.5a),  cn is an elliptic cosine of modulus K (the family parameter), 
(5 .5b )  is replaced by 

and the right-hand side of (5.6) must be divided by 2 - ~ - ~ .  The assumptions (2.3) 
require K - ~  = O(1).  The conditions A > 0 and ( 5 . 7 ~ )  are unchanged; (5.7b) remains 
unchanged if K~ > + but otherwise must be replaced by 

pk (y2-a2)i+A(1 -p) = 0, (A 2) 

W 2  > W ; { 1  +2[(kU,T)2-&2]*} (K2 < ;f). (A 3) 

The solitary wave is recovered in the limit K f 1 .  
The cnoidal wave (A 1)  is (within a uniform translation of X) the most general 

steady solution of (4.4) with uniform phase. The presence of the complex-conjugate 
term yr* prevents the introduction of an exponential (variable-phase) factor such as 
that which typically accompanies the solution of the cubic Schrodinger equation. 

Appendix B. Capillary effects 
The potential energy per unit area of free surface due to a surface tension pTl is 

T/ '=  BPTl(r;+r;). (B 1 )  

Combining (2.3) and (2.5) in (B 1 ) ,  regarding p ,  q, A,, B ,  and C, as functions of X 
and 7, averaging over y and 8 ,  invoking (2.7) and (3.1), and neglecting O(e2) relative 
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(B 2) 

to 1 ,  we obtain 

( V ) / p  = TI k2u2[$(p2 + q2)  + ~!l ' (p& + q&) + 46T4(Ai + Bi + 2Ci)], 

which must be subtracted from (2.8). Proceeding as in M84, Appendix E, we find that 
(2.4a), (3.17) and (3.10) must be replaced by 

p, = (2€)-~[(W/W1)2-1-a], (B 3) 

A* = d  1 + ( 1  - T2)' +$( 1 + 4 ~ ) ~ '  ( 1  + T2)2 -i(P - 4 ~ ) - '  (3 - P)'] (B 4) 
and 

where 

and 1, = (TJg); is the capillary length (1, = 2.7 mm for clean water). A ,  is plotted 
in figure 1 .  

The limiting values of A ,  and B ,  for deep water (note that Ed typically is large 
in those parametric rkgimes for which capillary effects are significant) are 

B* = T+kd(l-T2)+2~T, (B 5 )  

(B 6) a = T,k2/g = k212,, 

1 - 6 ~ - 8 8  
1 - 1 6 ~ '  

, B,+1+2a (T1.l). A*+ 

A ,  vanishes for a = 0.14, and solitary waves are impossible for 0.14 < (T < 0.25. 
It should be emphasized that the present formulation is valid only if p* and T2 - 4a 

are 0(1) as €40. T 2 - 4 ~  = O ( E )  corresponds to internal resonance between the first 
and second modes, which then must be regarded as of comparable magnitude in the 
perturbation expansion. 

Appendic C. Damping 

the damping ratio 6 are (Miles 1967, $7, wherein a: = 2x8, L = 6, B+ m )  
The contribution of the boundary layers on the walls and bottom of the tank to 

while that  of the boundary layer a t  the free surface is 

where 
Ss = i6(C,-Ci) cothkd, 

8= (2v/o);k, 

and C,-Ci, the ratio of the surface-film damping to that which would be produced 
by an inextensible film, may be approximated by unity in most applications (its 
maximum value is 2) .  If Ed >, 2, the second term in the square brackets (which 
represents bottom damping) may be neglected in (C l) ,  and cothkd may be 
approximated by unity in (C 2). Combining these approximations, we obtain 

Sw + 8, = 0.416. (C 4) 

The contribution of capillary hysteresis a t  the meniscus may be approximated by 

SK TI 
x a, bg ' 

6 
L -  
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where K is a semiempirical coefficient that may be approximated by 0.05 for a 
hydrophilic basin (e.g. clean water on glass) or 0.3 for a hydrophobic basin (e.g. clean 
water on lucite or brass), and a, is the amplitude of the oscillation at the meniscus 
(a,  = 4 2  a in the notation of $2 above). 

Substituting a, = 2 cm, b = 2.54 em, d = 2 em, g = 980 cm/sz, v = 0.01 cm2/s, 
TI = 72 dyn/cm and w = 1 0 ~  rad/s, the data for the apparatus of Wu et al., into 
(C 3)-(C 5), and assuming K = 0.05, we obtain 6,+~9~ = 0.013 and 6, = 0.002. 
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